Linked Charts

  //create a layout for the charts to be placed in
  var line = d3.select("body")
    .append("table")
      .append("tr");
  line.append("td")
    .attr("id", "heatmap");
  line.append("td")
    .attr("id", "scatterplot");

  //global variables to store 
  var selGene = 0;                                               
  var selDrug = 0;

  var scatterplot = lc.scatter()
    .width(300)
    .height(300)
    .axisTitleX("Gene Expression")
    .axisTitleY("Drug Score")
    .label(function(k){return "sample " + k})
    .size(3)
    .colour("CornflowerBlue")
    .x( function( k ) { return geneExprs[selGene][k] } )
    .y( function( k ) { return drugScores[selDrug][k] } )
    .title(function() { 
      return geneNames[selGene] + "/" + drugNames[selDrug]
    })
    .place("#scatterplot");

  var heatmap = lc.heatmap()
    .ncols( geneNames.length )
    .nrows( drugNames.length )
    .paddings({top: 50, left: 50, right: 60, bottom: 160})
    .height( 350 )
    .width( 600 )
    .colourDomain( [-1, 1] )
    .palette( d3.interpolateRdBu )
    .value( function( row, col ) {  
       return lc.pearsonCorr( drugScores[row], geneExprs[col] ) 
     } )
    .colLabel( function(col) { 
       return geneNames[col] 
     } )
    .rowLabel( function(row) { 
       return drugNames[row] 
     } )
    .on_click( function( rowId, colId ) {
       selGene = colId;
       selDrug = rowId;
       scatterplot.update();
    })
    .cluster("Row")
    .cluster("Col")
    .legend.width(75)
    .place( "#heatmap")

Introduction

The linked-charts is a d3-based JavaSript library that provides user with an easy way to generate sets of linked interactive charts to allow easy data exploration.

A process of analysing experimental data usually implies several steps of transformation and generalisation of raw read outs. And despite the fact that various quality control approaches are being used, manual inspection of the data is still required. The linked-charts library is aimed to facilitate this inspection by the means of a set of interactive charts that provide a detailed insight into the main figure.

To see how it works check our examples.

The linked-charts library allows one to generate a single stand-alone web-page that contains all the data and functionality to explore it. Thus, it can be considered as a way to share the data or presenting it to broad audience.

Plot types

Currently supported types of charts are:

Getting started

To include the current release of the linked-charts library add in you page use the following code.

<script src = "https://kloivenn.github.io/linked-charts/lib/linked-charts.min.js"></script>
<link rel = "stylesheet" href="https://kloivenn.github.io/linked-charts/lib/linked-charts.css">

You can also download latest version and the source code from GitHub. Pull requests and issue reports are greatly welcome.

Usage

The linked-charts is a JavaScript library and therefore at least minimal knowledge of this language is required to use it. Specifically, one need to know the basic JavaScript syntax, understand the concenpt of global and local variables and be able to define a function. Understanding of d3 library is highly recomended, although not required.

The core of the library are chart-objects that are initialised by calling a respective function. These functions return objects which are further modified by defining a set of properties. Some of them (such as elementIds) are required, others (colour, title, size etc.) are optional.

Function place is used to put the chart on a page, update function changes the chart to bring it in concordance with the current state of the environment and on_click property ensures the linkage between different charts on the page.

The minimal code, needed to create a set of charts similar to the one on the top of this page, is following:

  //global variables to store the clicked cell
  var selGene = 0;
  var selDrug = 0;

  //generating heatmap
  var heatmap = lc.heatmap()
    //number of rows and columns
    .ncols( geneNames.length )
    .nrows( drugNames.length )
    //value for each cell
    .value( function( row, col ) {  
       return lc.pearsonCorr( drugScores[row], geneExprs[col] ) 
     } )
    //column and row labels (optional properties)
    .colLabel( function(col) {return geneNames[col]} )
    .rowLabel( function(row) {return drugNames[row]} )
    //actions to be performed when a heatmap cell is clicked
    .on_click( function( rowId, colId ) {
       //change the state variables
       selGene = colId;
       selDrug = rowId;
       //update the scatterplot
       scatterplot.update();
    })
    .place();

  //generating scatterplot
  var scatterplot = lc.scatter()
    .x( function( k ) { return geneExprs[selGene][k] } )
    .y( function( k ) { return drugScores[selDrug][k] } )
    .place();

For more information on how to use the linked-charts library you can have a look at our tutorials or browse the list of all the available properties and methods.

Contacts

Feel free to contact us with any questions or suggestions.

Simon Anders: s.anders@zmbh.uni-heidelberg.de

Svetlana Ovchinnikova: s.ovchinnikova@zmbh.uni-heidelberg.de